A Path-Decomposition Theorem with Applications to Pricing and Covering on Trees

نویسندگان

  • Marek Cygan
  • Fabrizio Grandoni
  • Stefano Leonardi
  • Marcin Pilipczuk
  • Piotr Sankowski
چکیده

In this paper we focus on problems characterized by an input n-node tree and a collection of subpaths. Motivated by the fact that some of these problems admit a very good approximation (or even a poly-time exact algorithm) when the input tree is a path, we develop a decomposition theorem of trees into paths. Our decomposition allows us to partition the input problem into a collection of O(log logn) subproblems, where in each subproblem either the input tree is a path or there exists a hitting set F of edges such that each path has a non-empty, small intersection with F . When both kinds of subproblems admit constant approximations, our method implies an O(log log n) approximation for the original problem. We illustrate the above technique by considering two natural problems of the mentioned kind, namely Uniform Tree Tollbooth and Unique Tree Coverage. In Uniform Tree Tollbooth each subpath has a budget, where budgets are within a constant factor from each other, and we have to choose non-negative edge prices so that we maximize the total price of subpaths whose budget is not exceeded. In Unique Tree Coverage each subpath has a weight, and the goal is to select a subset X of edges so that we maximize the total weight of subpaths containing exactly one edge of X. We obtain O(log logn) approximation algorithms for both problems. The previous best approximations are O(logn/ log log n) by Gamzu and Segev [ICALP’10] and O(logn) by Demaine et al. [SICOMP’08] for the first and second problem, respectively, however both previous results were obtained for much more general problems with arbitrary budgets (weights).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A modified NSGA-II solution for a new multi-objective hub maximal covering problem under uncertain shipments

Hubs are centers for collection, rearrangement, and redistribution of commodities in transportation networks. In this paper, non-linear multi-objective formulations for single and multiple allocation hub maximal covering problems as well as the linearized versions are proposed. The formulations substantially mitigate complexity of the existing models due to the fewer number of constraints and v...

متن کامل

Mathematical Model for Bi-objective Maximal Hub Covering Problem with Periodic Variations of Parameters

The problem of maximal hub covering as a challenging problem in operation research. Transportation programming seeks to find an optimal location of a set of hubs to reach maximum flow in a network. Since the main structure's parameters of the problem such as origin-destination flows, costs and travel time, change periodically in the real world applications, new issues arise in handling it. In t...

متن کامل

The butterfly decomposition of plane trees

We introduce the notion of doubly rooted plane trees and give a decomposition of these trees, called the butterfly decomposition which turns out to have many applications. From the butterfly decomposition we obtain a oneto-one correspondence between doubly rooted plane trees and free Dyck paths, which implies a simple derivation of a relation between the Catalan numbers and the central binomial...

متن کامل

Benders decomposition for Supply Chain Network Redesign with Capacity planning and Multi-Period Pricing

Managing income is a considerable dimension in supply chain management in current economic atmosphere. Real world situation makes it inevitable not to design or redesign supply chain. Redesign will take place as costs increase or new services for customers’ new demands should be provided. Pricing is an important fragment of Supply chain due to two reasons: first, represents revenue based ...

متن کامل

On intermediate value theorem in ordered Banach spaces for noncompact and discontinuous mappings

In this paper, a vector version of the intermediate value theorem is established. The main theorem of this article can be considered as an improvement of the main results have been appeared in [textit{On fixed point theorems for monotone increasing vector valued mappings via scalarizing}, Positivity, 19 (2) (2015) 333-340] with containing the uniqueness, convergent of each iteration to the fixe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012